If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x=88
We move all terms to the left:
x^2+10x-(88)=0
a = 1; b = 10; c = -88;
Δ = b2-4ac
Δ = 102-4·1·(-88)
Δ = 452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{452}=\sqrt{4*113}=\sqrt{4}*\sqrt{113}=2\sqrt{113}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{113}}{2*1}=\frac{-10-2\sqrt{113}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{113}}{2*1}=\frac{-10+2\sqrt{113}}{2} $
| (x+3)=35 | | 16^2x-3=4x+1 | | 15x-211x+34=180 | | 2/x+9=x/x+4 | | 16x-18x-19x-3x+6=9x-12x+13 | | 41+62=x | | 43 (x+3)=−48 | | 4(k−53)=100 | | -4(1.75+i)=18 | | 3r-(5-r)=-20-(-39) | | 2(p+3)=p+10 | | 3f-2f=78 | | B^2-14b+36=0 | | 2(p+3=p+10 | | 5t+3=15 | | 6w-4=2w+8 | | 3/2(x+100)=165 | | 9h−8=19 | | –5m+8=–10−3m | | 1.2g=6 | | 13x+-14=8 | | 8k+2-6k=17-k | | j-87/2=5 | | 64+85=x | | 8x+7=5x+18=14x-11=10x+13=180 | | 32=8(b+2) | | r=4.511 | | -2+10x=9 | | 6(g+2)=36 | | 47+x=114 | | 22/c=4/17 | | 6x^2+24x-12=180 |